If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(a^2)=-4a+32
We move all terms to the left:
(a^2)-(-4a+32)=0
We get rid of parentheses
a^2+4a-32=0
a = 1; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·1·(-32)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*1}=\frac{-16}{2} =-8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*1}=\frac{8}{2} =4 $
| -2a+6=0 | | 1000=1.07x | | -3(n+8)=-3 | | 28x+-25=x | | 4(w−2)=10 | | 1.50x+30=50 | | 3x-5+5x+59=180 | | (2x−4)+(4x−30)=180 | | 2(y+7)=42 | | 3x-2+4x=10-(3x+2) | | -0.5(5x+15)=1.5(x+11) | | 75x=120 | | 2x/3=-6/9 | | X+2x+3x=318 | | 4(y+7)+7y=19 | | -3+v+2-1=1+4v+3 | | 4.6x-5.31=8.49 | | 7(y+7)+7y=19 | | 50+1.50x=20 | | (4x-16)+(8x+4)=180 | | 6(k+4)=24 | | 7(y+8)+7y=19 | | −22−y=5+6y+9 | | 7x-10+3x=150 | | 2x+3x+10=5(x+1)+5 | | 9(2k+3)+1=11(k-5) | | 4(5+4A)=-4a | | 8x=8;x=-1 | | 15x^2-19x+8=2 | | 17=3(p+-5)+8 | | 7(p-8)+24=-3(p-6) | | 8x=-8;x=-1 |